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Pontriagin and his students [ 1 1 have considered the general problem on 
optimal control and have derived the .principle of maximum”. Rozonoer 
[ 2 1 proved this principle in a different way, established the connection 
between the method of dynamic programming of R. Bellman and Pontriagin’s 
principle of maximum, and showed the analogy between these equations and 
the equations of analytical mechanics (Hamilton’s equations and the 
Hamilton -Jacobi equations). 

In the present work there is obtained a formula for the increment of 
the functional by a different method. It is shown that the problem of 
optimum control can be solved by the variational method with the aid of 
Lagrange multipliers. An explanation is given of the analogy between the 
equations of optimum control and the Lagrange equations in analytical 
mechanics. Some special cases are considered. 

1. Statement of the problem. We shall consider the system of 
differential equations 

ki = fi(Xl, 0.. , 2,; ZLf, . . . . up; t) (i = 1, . . . , n) (1.1) 

which describes the regulatory process of an automatic control system. 
Here x,(t), . . . . z,(t) are parameters of the control object, ul(t), . . . . 
u,(t) are the positions of the regulating organs. 

It is assumed that the functions fi are continugus, bounded for all 
arguments and have continuous first-order partial derivatives 

~fiP% (i, s = 1, . . . , n), afiiauk 
i=l, . . ..n 

k=l,...,r > 

It is also assumed that uI, . . . . 
satisfy the inequalities 

ur are piece-wise continuous and 
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In the sequel we shall refer to ul, . . . . ur as the "admissible con- 
trols". 

Let us assume that at time tO the system is at the point P = (z,", 
. ..) x,,O) of the phase space. In [2 ] it was shown that the problem of 
optimum control can be reduced to the consideration of the system (1.1) 
(we assume that the new variables have already been intorudced in (1.111, 
in which one has to select from the admissible controls which lead the 
system (1.1) from the pointr(to) = x0, the u,(t), . . . . u,(t) in such a 
way that at the given instant of time t = T the sum 

s=clxl(T)+...+c,x,(T) (1.3) 

will take on a minimum (or maximum) value. Here, the ci are certain con- 

stants. 

2. Case when the trajectory has a free right end. We shall 
consider the case when no conditions are imposed on xl, . . . . x, when 
t = T. 

Let U1’ -.*, u,. be optimum controls, i.e. they impart to the functional 
S(T) (1.3) a minims (or maxims) value. From (1.11 we have 

Here ci is an increment of the second or higher order. Multiplying the 
terms on both sides of this equation by xi(t), we obtain 

n af. r aj. 
Wk = hi z) * 6Xj + hi 2 < 6Uk + hiEl (i = 1, . . * , n) (2.2) 

j=1 i k=1 

Next let us integrate both parts of (2.2) from to to T. For the left- 
hand side we find 

From the condition 

Xi (to) = Xi0 (i = 1, . . . , n) (2.4) 

it follows that 
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6Xi (to) = 0 (i = 1, . . . , n) 

Furthermore, let us set 

hi(T)= -Ci (i = 1, . . . ) n) 

(2.5) 

(2.6) 

From this it follows that 

bsxi 1: = - C&i (T) 

In accordance with these conditions we find that after integrating 
(2.2) we obtain 

- Ci 6Xi (7’) = [ {[hi i 2 6Xj + ii6Xi + hi il d$ dun] + hiSi} dt 

t”, ‘j=l 3 

(i = 1, . . . , 72) (2.7) 

Finally, carrying out the summation for i in (2.71, we obtain an ex- 
pression for the increment of the functional (1.3) when t = T: 

(2.8) 

lbe linear part of Equation (2.8) is the variation of the functional 
when t = T, i.e. 

t, i=l 

If for the controls ul, . ..) u the functional S has a minimum (or 
maximum) value when t = T, then tke variation of the functional S will 
vanish when t = T, i.e. 6S(Z') = 0. F rom this it follows that the right- 
hand side of Eiquation (2.9) must be equal to zero. 

'Ibe multipliers hi(t) are selected so that 

ii+jJ hj$=O, or xi=_5 hj 2 (i = 1, . .., n) (2.10) 
j=l 1 j=l 2 

Here one has to take into account the boundary conditions (2.6). 
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Furthermore, because of the independence of the variations au,, . . . , i3ur, 
the right-hand side of (2.6) has to be zero, and in addition to the con- 

ditions (2.10) one has to have the conditions 

Z;h&O (k==l, . . ..r) (2.11) 
+I k 

“Bus, the set of equations (Z.lO), (2.61, (2.11), (1.1) and (2.4) 
form the system of equations of the problem under consideration. 

Let us introduce the function 

Then the indicated system reduces to a system of Hamilton’s equations 

Cii = dH / a?bi, Xi (t(J) = Xi0 (i---1, . . ..n) (2.13) 

lli=-aHidxii, ‘hi (T) = - Ci (i = 1 , . . . , IX) (2.%4) 

~~/~~~ = 0 (k=1, . . ..t‘) (2.15) 

‘Ihe condition (2.15) indicates that under optimum control uI, . . . , ur 
the function H will be an extremum. 

From what has been said, it follows that the problem on optimum con- 

trol can be solved by the method of Lagrange multipliers Ai( In fact, 

the problem can be reduced to the determination of the extremum of the 

integral 

(2.16) 

under the conditions 

z& - fi (51, . . . , xnc,; z&l, . . . , u,; t> = 0 (i = 1, . . * ) n) (2.17) 

For the solution of this problem we construct a new function 

L = ~ Ci$i + i: hi (~~ - fi) (2.18) 
i=1 i=1 

If the integral (2.16) takes on an extremal value for ul, . . . . u,. for 

the corresponding zl, . . . j x,, then by Lagr-e’ s method 

C9L d dL _--__~ 
dXi dt a;. 0 (i-1, . . ..n) 

z 
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i?L d aL __-_~.= 
auk dt auk 

0 (k=l, . . ..r) 

Furthermore, Equations (1.1) and (2.17) can be written in the form 

aL d ar, ----= 
ahi dt ali. 

0 (i = 1 
I”‘, n) 

1 

(xa) 

(222) 

Equations (2.19) and (2.20) are nothing more than Equations (2.10) 
and (2.11) or (2.14) and (2.15). 

It should be noted here that in the application of Lagrange's method 
one must carefully determine the boundary conditions (2.6) for the 
differential equations (2.19). 

Equations (2.19), (2.20) and (2.21) have the form of 
tions in analytical mechanics. Furthermore, between the 
L there exists the relation 

“7 aL 
Hz-L+ h_tti 

i=l “xi 

Lagrange's equa- 
functions H and 

(2.22) 

3. Some other cases. I. We 

xi(t) (i = 1, . . . . n) when t = T. 

1) First case. When t = T, the 

impose certain restrictions on the 

functions ni(T) (i = 1, . . . . n) can be 
subjected to the condition F(zl, . . . . xn) < 0. Here we shall confine 
ourselves to the consideration of the case 

F (xl, . . . , x,,) = 0 when t =T (3.1) 

In order that &S(T) = 0, we have from (2.9) that 

4 
ii (“i +ii hj$)dxi+b i hj~d~k=o whent,<<<T (3.2) 
i=1 j=l 1 k=l j=l 

Ihe condition (3,l) can be considered as the new equation of con- 
straint. If one now assumes the existence of the derivatives dF/dni(i = 
1, -.*, d, it follows from the first variation of the function F(xl, 
. ..) xn) for 6Xi(T) (i= 1, . . . . n) that 

g+x,+. . .+ghxn4 
n 

(3.3) 

lkis is the auxiliary condition on the 6Xi (i = 1, . ..) 
tions (3.2). Not all of the ‘F/~xi (i = 1, 

n) in Equa- 
. ..) 

otherwise the function F(x,, . . . . 
n) are zero in (3.3), 

the variables x1, 
XJ would not contain a single one of 

. . . . n,. 
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Suppose, for example, that dF/ik, is not zero. Then it follows from 
(3.3) that 

~sX,-_i.*.++sX,_, 
IL-1 

$- 
n 

Substituting this expression into the first sum of Equation (3.2)‘ we 
obtain 

Let us select the A,, A,, . . . . A,_ 1 so that 

or, unifying the notation, 

jL;=_i his+g (i = 1, . . . , n) 
j=l i 1 

(3.5) 

'Ihen, if the relations (3.5) and (2.11) are both satisfied 

&St13 = 0 in accordance with (3.2) and (2.9). In the case under conside- 
ration one obtains Equations (3.5) in place of (2.10). 'Ihe boundary con- 
ditions for (3.5) are taken, as before, in the form (2.6). If we intro- 

duce the function 
n 

H” = 2 h$i - F 
i=l 

we then obtain the canonical form of the equations 

In this case the problem can be solved by Lagrange's 
struct the function 

(3.6) 

(k=f, ‘.., T.) (3.7) 

method. We con- 
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i=l i=l 

in place of (2.18). From the equations 

a@ d c%D 
---T 8Xi dt ax. =o (i=l, . . . . n), &&F=o (k=l, 

2 k k 

we obtain 

ii = - i hj 2 + An+1 g (i=l, ,..,n) 
j=l * i 

and also Equations (2.11). 

Let us now consider the multiplier Xn+l. ‘lhe nonhomogeneous 

. . . . r) (3.9) 

(3.10) 

equations 

for the hi(i = 1, . . . . n) are given by the differential equations (3.10). 
Their particular solutions ui have the form 

(D = det /j A#) 11) (3.11) 

Here, the A,(‘), .,., A,(‘) are a fundamental system, and Dij is the 
minor with the proper sign of the element Xl(j) in the determinant D. 
From (3.11) it can be seen that one can choose an arbitrary constant for 
a particular solution of Xn+l. Let 

h n+1- -1 (3.12) 

lhen Equations (3.10) will be of the same form as (3.5). Furthermore, 
in Expression (3.8) of the function @ one should also set Xn+l = 1. One 
can solve the problem in an analogous manner if there are given several 
restrictions (3.1), i.e. if 

Fs(X,, . . ..2.)=0 (S=l, . . ..m.m<n) (3.13) 

2) Second case. Let us suppose that when t = T all the xi(T) (i = 1, 
. . . , n - 1) are fixed, while for x,(T) one is to find the minimum (or 
maximum) value. For example, one may be required to find the minimum 
transient process for some control system. 

In this case one has to consider the boundary conditions of Euler’s 
equation. When t = T, all the xi(T) (i = 1, . . . , n - 1) are fixed. There- 
fore, 6Xi(T) = 0 (i = 1, . . . . n - 1). Hence, it is impossible to deter- 
mine the Xi(T) (i = 1, . . ., n - 1) in this case; we have only 

h,(T)=-1 (3.14) 
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We thus obtain the following differential 
ditions: 

equations and boundary con- 

(i = 1, . , , n,) (3.15) 

iiS -i hjS (i=i,..., IL) i hi_!&) (k= 1, I). . , r) (3.16) 
j=l z j-1 k 

xi(t())=x; (izl,..., n) Xi(T) = xi1 (i = 1,. . ., n - 1) 

Here, xil(i = 1, . . . , R - 1) are fixed values. 

‘Ihere exist, as yet, no general methods for solving these differ- 
ential eS[uations; in some investigations there are given solutions of 
several linear problems treated by various methods, 

II. We shall derive one relation which is useful for solving some 
linear systems. 

1) For the system 

we have 

6ii = J$ aij (t) 6~j -i_ $J bgk (t) 6uk (i= f, 

j=l ?%=I. 

Multiplying this equation by xi(t) and integrating 
to T, we obtain 

. 9 JE) (3.17) 

. . . ) ?$I (3.18) 

the result from t, 

hjbja6uk] dt (3.19) 

As is known, in order that the functional (1.3) have a minimum value, 
it is necessary that AS > 0. Let us choose the Xi(t) so that 

n 

Then, in order: that the condition AS > 0 be satisfied, it is neces- 
sary that 

T 1) 

Let 
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fi = i;i UijXj + k&1 bikUk (i = 1, . . . , a) 
j=l 

?hen the condition (3.21) can be expressed in the form 

(.X22) 

(3.23) 

If one now introduces the function H = Alfl + . . . + h,f,, then one 
obtains 

6ug\<O, or AH,<0 (3.24) 

Ihis means that under a control process which is optimal for the 
minimum (maximum) value of the functional S, the function H attains a 
maximum (minimum) value. If one solves the problem in this case by 
Lagrange’s method, then one obtains again from the equations 

aa d XR 
--_--r-~= 

axi dt ax. 
0 

0 

the system (3.201. l3ut by 

acD___&) d am 
auk dt auk 

we have 

aH/aule=o 

(i := 1, . . , n) 

(k = 1, . . , r) 

(k = 1, . . . , r) (3.25) 

‘Ihis condition indicates that the optimum controls uI, . ..) ur give 
an extremal value to the function Hi, but it is impossible to determine 
what type of extremum it is, a maximum or a minimum. 

2) The above discussion of the system (3.17) applies also to the 
linear system 

(i = 1, . . . , n) (3.26) 

3) The systems (3.17) and (3.26) can be written in the general form 

pi = z aij (t) Xj + Xi 
j=l 

(i = 1, . . . ) n) (3.27) 

Multiplying (3.27) and (3.20) by Xi and xi, respectively, and summing 
with respect to i, we obtain 
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‘l’he second term on the left-hand side vanishes, and we obtain [ 3 1 

Integrating from t, to t2, we obtain 

(3.28) 

(3.29) 

One can use the relation repeatedly in solving specific problems if 
one selects different appropriate values for tl &id t2. 
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