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Pontriagin and his students [1] have considered the general problem on
optimal control and have derived the "principle of maximum"., Rozonoer

[ 2] proved this principle in a different way, established the connection
between the method of dynamic programming of R. Bellman and Pontriagin’s
principle of maximum, and showed the analogy between these egquations and
the equations of analytical mechanics (Hamilton’s equations and the

Hamil ton-Jacobi equations).

In the present work there is obtained a formula for the increment of
the functional by a different method, It is shown that the problem of
optimum control can be solved by the variational method with the aid of
Lagrange multipliers. An explanation is given of the analogy between the
equations of optimum control and the Lagrange equations in analytical
mechanicg., Some special cases are considered.

1. Statement of the problem. We shall consider the system of
differential equations

xizfi(x]’-ﬂvxn; Ugy oo oy Uyl t) {i=1,...,n (11)

which describes the regulatory process of an automatic control system.
Here x,(t), ..., z,(t) are parameters of the control object, u,(t), ...,
u_(t) are the positions of the regulating organs.

It is assumed that the functions f; are continugus, bounded for all
arguments and have continuous first-order partial derivatives

offome  Gs=t,...m.  Offows (LT3

P

It is also assumed that 4y, ..., u, are piece-wise continuous and
satisfy the inequalities

817
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gi(un -y u) <O G=1,...,m) (1.2)

In the sequel we shall refer to Uy, ..., 4, as the "admissible con-
trolsn.

Let us assume that at time t, the system is at the point x° = (x,°,
x,°) of the phase space. In[2] it was shown that the problem of
optimum control can be reduced to the consideration of the system (1.1)
(we assume that the new variables have already been intorudeed in (1.1)),
in which one has to select from the admissible controls which lead the
system (1.1) from the point x(ty) = 2°, the u,(¢), ..., u (¢) in such a
way that at the given instant of time t = T the sum

S=cz;(T)+...4 cozn (T) (1.3)

will take on a minimum (or maximum) value. Here, the ¢; are certain con-
stants.

2. Case vhen the trajectory has a free right end. We shall
consider the case when no conditions are imposed on x;, ..., x, when

t =T

Let u;, ..., u, be optimum controls, i.e. they impart to the functional

S(T) (1.3) a minimum (or maximum) value. From (1.1) we have
n

éfvi=Zax‘5 +Z ‘ﬁuk+e (i=1,...,n) (2.1)

j==1 h"l
Here ¢ ; is an increment of the second or higher order. Multiplying the
terms on both sides of this equation by A (t), we obtain

xéxz_hz la +x2 lﬁuh—%—?\.ei (=1, ..., (2.2

Next let us integrate both parts of (2.2) from t, to T. For the left-
hand side we find
T

— Aoy ar (2.3)

T T
{ Aideyds = Mida t
t, °

From the condition
z; (to) = x° i=1,...,n (2.4)

it follows that
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dx; (2) = 0 (i=1,...,n) (2.5)
Furthermore, let us set
M(T)=—c¢ (i=1,...,n) (2.6)
From this it follows that
Méxi Z = — Ciéxi (T)

In accordance with these conditions we find that after integrating
(2.2) we obtain

r "9, . o of
— ;0 (T) = .\J {[}\q E Tz Ox; + Aidz; -+ A kz_l ou
) —

: 6uk] -+ ?\,iei} dt

k
(i=1...,n) (2.7)

oy

Finally, carrying out the summation for i in (2.7), we obtain an ex-
pression for the increment of the functional (1.3) when ¢t = T:

i=1 t, i=1

AS (T) = i eida; (T) = —§ {[i} (xi + i 7"'2—2> d; +
j=1

r n 0 i n )
+3 3 byt |+ D heefds 2.8)
=1

k=1 j=1

The linear part of Equation (2.8) is the variation of the functional
when t =T, i.e.

T
- n af. r o on af.
88 (T) = _S S (xi + S Al ) o+ S N A 5t 6uk]dt (2.9)
f, i=1 j=1 t k=1j=1 k
If for the controls u;, ..., u,. the functional S has a minimum (or

maximum) value when ¢t = T, then tﬁe variation of the functional S will
vanish when t = T, i.e. 8S(T) = 0. From this it follows that the right-
hand side of Equation (2.9) must be equal to zero.

The multipliers A (t) are selected so that

. i of . e 8t ,
7Vi+27~i'(3“af;],”:0, or 7"72:_27"56—15: t=1,....n  (2.10)

i=1 i=1

Here one has to take into account the boundary conditions (2.6).
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Furthermore, because of the independence of the variations u,, ..., Su,,
the right-hand side of (2.6) has to be zero, and in addition to the con-
ditions (2.10) one has to have the conditions

af.
2 A /i _g (k=1,...,71) (2.11)

I ou,
=t k

Thus, the set of equatioms (2.10), (2.6), (2.11), (1.1) and (2.4)
form the system of equations of the problem under consideration.

Let us introduce the function
H = 7\,1f1 ‘J(‘. - .+ ann (2-12)

Then the indicated system reduces to a system of Hamilton’s equations

G = 0H | 0Ny, wi(t) =2 (=1, ..., n) (2.13)

hi= —0H [dx;, W(T)=—¢ G=1,..., n) (2.14)

OH | =0 (b1, ..., (2.15)

The condition (2.15) indicates that under optimum control u,, ..., u,

the function H will be an extremum.

From what has been said, it follows that the problem on optimum con-
trol can be solved by the method of Lagrange multipliers A;(t). In fact,
the problem can be reduced to the determination of the extremum of the
integral

T n
S=\ S eadt (2.16)
f, 1=1
under the conditions
B — [ (@ o ooy Tni Uiy o ooy Ur ty=20 (i=1, ..., n) (217\)

For the solution of this problem we construct a new function

L= e+ 2 Milei— /) (2.18)
. el

=1 1

If the integral (2.16) takes on an extremal value for Uy, ooy B, for
the corresponding x;, ..., x,, then by Lagrange’s method

n?

oL d oL o ;
T @ =0 (i=1,...,n) (2.19)
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oL  d oL i
— e = — 29
auk i a,;h (k = 1, sy, r) (u-A())

Furthermore, Equations (1.1) and (2.17) can be written in the form

oL d oL G .
—a—}"l-—"w'a—}::‘:o (L:1 ..... n) (._)42.1)
Equations (2.19) and (2.20) are nothing more than Equations (2.10)

and (2.11) or (2.14) and (2.15).

It should be noted here that in the application of Lagrange's method
one must carefully determine the boundary conditions (2.6) for the
differential equations (2.19).

Equations (2.19), (2.20) and (2.21) have the form of Lagrange’s equa-
tions in analytical mechanics. Furthermore, between the functions H and
L there exists the relation

(2.22)

i=1
3. Some other cases. I. We impose certain restrictions on the
x;(t) (i=1, ..., n) when t = T.

1) First case. When t = T, the functions x; (T) (i = ..., n) can be

subjected to the condition F(x, ..., x,) < 0 Here we shall confine
ourselves to the consideration of the case

F(xli ey xn) =0 when =T (3'1)

In order that 8S(T) = 0, we have from (2.9) that

3 (i + 3 0y 2 )6x1+22x, dm=0 whent,<t<T  (32)

i=1 =1 k=1 j=1

The condition (3,1) can be considered as the new equation of con-
straint. If one now assumes the existence of the derivatives 6F/¢9x (i =
1, ..., n), it follows from the first variation of the function F(x],

oy %) for 8x2,(T) (i =1, ..., n) that
oF oF
Tfjx—‘éxl“l—...'*— —x—-ﬁxnzo (3.3)
This is the auxiliary condition on the Bx (i=1, ..., n) in Equa-
tions (3.2). Not all of the BF/ax (i=1, ..., n) are zero in (3.3),
otherwise the function F(xl, ..., %,) would not contain a single one of

the variables Xy vee, X,
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Suppose, for example, that JF/dx, is not zero. Then it follows from
(3.3) that

oF
On—1 ) N

Substituting this expression into the first sum of Equation (3.2), we
obtain

By = — ( dw; . v ot

n—1

E[k +2‘, Ny o ]ax,+
) i=1
Tt 3 0 [ (n bt 52 0n) [ 2]

n—1

2[?~+2M 2 i(xwzlm%)/—jﬁaxi
24, )| o,

1=1

Let us select the A, A, ..., A _; so that

oF : < 9f; oF
}v +E ?\']ax ""é;—*, ?"l+2 }VITZ‘J:W (i:i,..., I‘l,~—-1) (34)
n J‘*l 1 1
or, unlfylng the notation,
*:_2 :k, 8:1: L ax (i=1,...,n (3.9)

j=1

Then, if the relations (3.5) and (2.11) are both satisfied
Z’Wauk (k=1,...,n)

8S(T) = 0 in accordance with (3.2) and (2.9). In the case under conside-
ration one obtains Equations (3.5) in place of (2.10). The boundary con-
ditions for (3.5) are taken, as before, in the form (2.6). If we intro-
duce the function

H® = Mf; —F (3.6)

we then obtain the canonical form of the equations
) () & , OH®
Ty = o, A= — oz, (i=1,...,n), uy T =0 (k=t,...,n 3.7

In this case the problem can be solved by Lagrange’s method. We con-
struct the function
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@ =§] ci; +§] M (& — fi) + AnpiF (3.8)
i=y i=1
in place of (2.18). From the equations
%—%ggﬂ (=1 ....n) %—%%:0 (k=1,..,1 (3.9)
we obtain
'=—§‘: A a’+>»n+1%f—i G(=1,...,n (3.10)

i=1

and also Equations (2.11)

Let us now consider the multiplier A ,,. The nonhomogeneous equations
for the A (i = 1, n) are given by the differential equations (3.10).
Their particular solutions u; have the form

= detjAsV])

(3.11)

T
ar
D (T) 2 Dl] (1: n41"3, a dt (D -

n
=S M () S
, P
y A, (1) are a fundamental system, and D,

Here, the A; (l)
minor with the proper 51gn of the element A, (5) in the determinant D.
From (3.11) it can be seen that one can choose an arbitrary constant for
(3.12)

ij 1s the

a particular solution of A ;. Let
}‘fn+1 =1

Then Equations (3.10) will be of the same form as (3.5). Furthermore,

in Expression (3.8) of the function ® one should also set Apep = L. One
can solve the problem in an analogous manner if there are given several
restrictions (3.1), i.e. if

Fg(xy, ..., %) =0 (S=1,...,m m<n) (3.13)

2) Second case. Let us suppose that when t = T all the x,(T) (i = 1,
, n— 1) are fixed, while for x,(T) one is to find the minimum (or

maximum) value. For example, one may be required to find the minimum
transient process for some control system.
In this case one has to consider the boundary conditions of Fuler’s
=1, ..., n- 1) are fixed. There-
, n— 1), Hence, it is impossible to deter-

equation. When t = T, all the x.(T) (i
fore, 8x,(T) = 0 (i = .
mine the A (T) (i 1 ..., n— 1) in this case; we have only

hon (T) = — (3.14)
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We thus obtain the following differential equations and boundary con-
ditions:

Ty = fi(Tas oo vy Ty Uyy ovvy Ups 1) (i=1,...,n) (3.15)
n af
-==—-——Z?»—-—— (i=1,..., n) /_J;%,J,WMO (k=1,...,r (3.16)
J==1 j=1
xt(tﬁ):xi (i=1,..., n) xt(f):xl (i=1,...,n—1)
Here, xil(i =1, ..., n—1) are fixed values.

There exist, as yet, no general methods for solving these differ-
ential equations; in some investigations there are given solutions of
several linear problems treated by various methods.

II. We shall derive one relation which is useful for solving some
linear systems.

1) For the system

G= 0 ay®a; + N bu@ur  (=1,..., 9 (3.147)
=1 k=1
we have N ,
dd; = 2y @y (1) 05+ 2 b (O dux (=1, ..., n) (3.18)
Fe==1 k=1

Multiplying this equation by A;(t) and integrating the result from t,
to T, we obtain

n T n r on
=D ¢80, (T) = H (b 2 M) oo+ 2 D) Mbydug| e (3.19)
t

imal o i=1 j=1 K==1 j=1

n

As is known, in order that the functional (1.3) have a minimum value,
it is necessary that AS > 0. Let us choose the A;(t) so that

?‘\'i = ——-,2 ;\j(},ﬁ ({214, ...,n (320)

i=1

Then, in order that the condition AS > 0 be satisfied, it is neces-
sary that

r

2 2 hbadu <0 (3.21)

k=1 j==1

Let
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fi = 2 @z 2y bute (=1, ..., n) (3.22)
k=1

j=1

Then the condition (3.21) can be expressed in the form

r o af‘ o
> Z xjﬁé duy < 0 (3.23)
k=1j=1
If one now introduces the function H= X;f, + ... + A, f,, then one
obtains
O s <0 AH <0 3.24
auk Up Y, or _n ( . )

k=1

This means that under a control process which is optimal for the
minimum (maximum) value of the functional S, the function H attains a
maximum (minimum) value. If one solves the problem in this case by
Lagrange’s method, then one obtains again from the equations

oo d 00
Oz, dt a“."i

the system (3.20). But by

D d oD

a—uk——d—ta—dk—-o k=1, , )
we have
OH [ dux =0 (k=1,...,r) (3.25)
This condition indicates that the optimum controls u;, ..., u_ give

an extremal value to the function H;, but it is impossible to determine
what type of extremum it is, a maximum or a minimum.

2) The above discussion of the system (3.17) applies also to the

linear system
n

:Z':i‘—‘-‘z aij(t)xj*]—cpi(u],---,ur)zfi (i=1,...,n) (3.26)
j=1
3) The systems (3.17) and (3.26) can be written in the general form

n

& = D) ay; (t) x5 -+ X; (=1,...,n) (3.27)

=1
Multiplying (3.27) and (3.20) by A; and x;, respectively, and summing
with respect to i, we obtain
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n k3 k3 T
gd;z higi — 2 2 (@b — azidgms) = 2 X,
=1

=1 i=1 j=1
The second term on the left-hand side vanishes, and we obtain [3 ]

L3 h = D) M, (3.28)

i=1 i=1

Integrating from t; to t,, we obtain

S re, ) k) tg(i AX) de (3.29)
fuml d==1 t, i=1

One can use the relation repeatedly in solving specific problems if
one selects different appropriate values for t; and t,.
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